Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Indian J Med Res ; 159(1): 91-101, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344919

RESUMO

BACKGROUND OBJECTIVES: The clinical course of COVID-19 and its prognosis are influenced by both viral and host factors. The objectives of this study were to develop a nationwide platform to investigate the molecular epidemiology of SARS-CoV-2 (Severe acute respiratory syndrome Corona virus 2) and correlate the severity and clinical outcomes of COVID-19 with virus variants. METHODS: A nationwide, longitudinal, prospective cohort study was conducted from September 2021 to December 2022 at 14 hospitals across the country that were linked to a viral sequencing laboratory under the Indian SARS-CoV-2 Genomics Consortium. All participants (18 yr and above) who attended the hospital with a suspicion of SARS-CoV-2 infection and tested positive by the reverse transcription-PCR method were included. The participant population consisted of both hospitalized as well as outpatients. Their clinical course and outcomes were studied prospectively. Nasopharyngeal samples collected were subjected to whole genome sequencing to detect SARS-CoV-2 variants. RESULTS: Of the 4972 participants enrolled, 3397 provided samples for viral sequencing and 2723 samples were successfully sequenced. From this, the evolution of virus variants of concern including Omicron subvariants which emerged over time was observed and the same reported here. The mean age of the study participants was 41 yr and overall 49.3 per cent were female. The common symptoms were fever and cough and 32.5 per cent had comorbidities. Infection with the Delta variant evidently increased the risk of severe COVID-19 (adjusted odds ratio: 2.53, 95% confidence interval: 1.52, 4.2), while Omicron was milder independent of vaccination status. The independent risk factors for mortality were age >65 yr, presence of comorbidities and no vaccination. INTERPRETATION CONCLUSIONS: The authors believe that this is a first-of-its-kind study in the country that provides real-time data of virus evolution from a pan-India network of hospitals closely linked to the genome sequencing laboratories. The severity of COVID-19 could be correlated with virus variants with Omicron being the milder variant.


Assuntos
COVID-19 , Feminino , Humanos , Masculino , Progressão da Doença , Hospitais , Estudos Prospectivos , SARS-CoV-2/genética , Adulto , Adolescente , Idoso , Pessoa de Meia-Idade
2.
NPJ Vaccines ; 9(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167915

RESUMO

Measuring SARS-CoV-2-specific T cell responses is crucial to understanding an individual's immunity to COVID-19. However, high inter- and intra-assay variability make it difficult to define T cells as a correlate of protection against COVID-19. To address this, we performed systematic review and meta-analysis of 495 datasets from 94 original articles evaluating SARS-CoV-2-specific T cell responses using three assays - Activation Induced Marker (AIM), Intracellular Cytokine Staining (ICS), and Enzyme-Linked Immunospot (ELISPOT), and defined each assay's quantitative range. We validated these ranges using samples from 193 SARS-CoV-2-exposed individuals. Although IFNγ ELISPOT was the preferred assay, our experimental validation suggested that it under-represented the SARS-CoV-2-specific T cell repertoire. Our data indicate that a combination of AIM and ICS or FluoroSpot assay would better represent the frequency, polyfunctionality, and compartmentalization of the antigen-specific T cell responses. Taken together, our results contribute to defining the ranges of antigen-specific T cell assays and propose a choice of assay that can be employed to better understand the cellular immune response against viral diseases.

3.
Eur J Med Res ; 28(1): 421, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821945

RESUMO

OBJECTIVES: To study clinical disease outcomes in both human and animal models to understand the pathogenicity of omicron compared to the delta variant. METHODS: In this cross-sectional observational study, clinical outcomes of adults who tested positive at 2 testing centres in Delhi National Capital Region between January 2022 and March 2022 (omicron-infected; N = 2998) were compared to a similar geographical cohort (delta-infected; N = 3292). In addition, disease course and outcomes were studied in SARS-CoV-2-infected golden Syrian hamsters and K-18 humanized ACE2 transgenic mice. RESULTS: Omicron variant infection was associated with a milder clinical course [83% (95% CI 61, 94) reduced risk of severity compared against delta] adjusting for vaccination, age, sex, prior infection and occupational risk. This correlated with lower disease index and vir comparing omicron with other variants in animal models. CONCLUSIONS: Infections caused by the omicron variant were milder compared to those caused by the delta variant independent of previous immunity.


Assuntos
COVID-19 , Adulto , Animais , Cricetinae , Camundongos , Humanos , Estudos Transversais , SARS-CoV-2/genética , Progressão da Doença
4.
Commun Biol ; 6(1): 935, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704701

RESUMO

A recently emerged sub-lineage of Omicron, BA.5, together with BA.4, caused a fifth wave of coronavirus disease (COVID-19) in South Africa and subsequently emerged as a predominant strain globally due to its high transmissibility. The lethality of BA.5 infection has not been studied in an acute hACE2 transgenic (hACE2.Tg) mouse model. Here, we investigated tissue-tropism and immuno-pathology induced by BA.5 infection in hACE2.Tg mice. Our data show that intranasal infection of BA.5 in hACE2.Tg mice resulted in attenuated pulmonary infection and pathology with diminished COVID-19-induced clinical and pathological manifestations. BA.5, similar to Omicron (B.1.1.529), infection led to attenuated production of inflammatory cytokines, anti-viral response and effector T cell response as compared to the ancestral strain of SARS-CoV-2, Wuhan-Hu-1. We show that mice recovered from B.1.1.529 infection showed robust protection against BA.5 infection associated with reduced lung viral load and pathology. Together, our data provide insights as to why BA.5 infection escapes previous SARS-CoV-2 exposure induced-T cell immunity but may result in milder immuno-pathology and alleviated chances of re-infectivity in Omicron-recovered individuals.


Assuntos
COVID-19 , Camundongos , Animais , Camundongos Transgênicos , SARS-CoV-2 , Citocinas , Modelos Animais de Doenças
5.
Lancet Reg Health Southeast Asia ; 14: 100190, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37492417

RESUMO

Background: Despite having the highest number of preterm births globally, no genomic study on preterm birth was previously published from India or other South-Asian countries. Methods: We conducted a genome-wide association (GWA) study of spontaneous preterm birth (sPTB) on 6211 women from India. We used a novel resampling procedure to identify the associated single nucleotide polymorphisms (SNPs) followed by haplotype association analysis and imputation. Findings: We found that 512 maternal SNPs were associated with sPTB (p < 2.51e-3), of which minor allele at 19 SNPs (after Bonferroni correction) had increased genotype relative risk. Haplotypes containing six of the 19 SNPs (rs13011430, rs8179838, rs2327290, rs4798499, rs7629800, and rs13180906) were associated with sPTB (p < 9.9e-4; Bonferroni adjusted p-value <0.05). After imputation in regions around the 19 SNPs, 15 imputed SNPs were found to be associated with sPTB (Bonferroni adjusted p-value <0.05). One of these imputed SNPs, rs35760881, and three other SNPs (rs17307697, rs4308815, and rs10983507) were also reported to be associated with sPTB in women belonging to European ancestry. Moreover, we found that GG genotype at rs1152954, one of the associated SNPs, enhanced risk of sPTB and reduced telomere length. Interpretation: This is the first study from South Asia on the genome-wide identification of maternal SNPs associated with sPTB. These SNPs are known to alter the expression of genes associated with major pathways in sPTB viz. inflammation, apoptosis, cervical ripening, telomere maintenance, selenocysteine biosynthesis, myometrial contraction, and innate immunity. From a public health perspective, the trans-ethnic association of four SNPs identified in our study may help to stratify women with risk of sPTB in most populations. Funding: Department of Biotechnology (India), Grand Challenges India - All Children Thriving Program and Biotechnology Industry Research Assistance Council (BIRAC).

6.
Epigenomics ; 15(9): 543-556, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345372

RESUMO

Background: We performed an epigenome-wide longitudinal DNA methylation study on an Indian cohort of pregnant women, GARBH-Ini, at three time points during pregnancy and at delivery. Aim & objective: Our aim was to identify temporal DNA methylation changes in maternal peripheral blood during the period of gestation and assess their impact on biological pathways critical for term delivery. Results: Significantly differentially methylated CpGs were identified by linear mixed model analysis (Bonferroni p < 0.01) and classified into two distinct temporal methylation trends: increasing and decreasing during gestation. Genes with upward methylation trend were enriched for T-cell activity, while those with a downward trend were enriched for solute transport and cell structure organization functions. Conclusion: Consistent trends of DNA methylation in maternal peripheral blood point to the sentinel function of T cells in the maintenance of pregnancy, and the importance of coordinated cellular remodeling to facilitate term delivery.


DNA methylation is the addition of a methyl group to the molecular structure of DNA, which then alters the gene expression. The goal of the study was to find out how DNA methylation patterns change over time during pregnancy and how these changes are related to the biological processes that are important for the delivery of a healthy baby at full term. Using statistical modeling, we identified specific patterns of DNA methylation changes during pregnancy and classified them into two groups based on the direction of the changes. The genes associated with increasing methylation levels were related to the activities of T cells, which are important for the immune system. The genes associated with decreasing methylation levels were related to processes like transporting substances and organizing cell structures. In conclusion, our findings suggest that T cells play an important role in maintaining a healthy pregnancy, and the study highlights the importance of coordinated changes in cells to support a successful delivery of a baby at term.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Feminino , Gravidez , Gestantes , Epigenoma , Estudos Longitudinais
7.
Indian J Med Res ; 157(6): 509-518, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37322634

RESUMO

Background & objectives: Vaccination and natural infection can both augment the immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but how omicron infection has affected the vaccine-induced and hybrid immunity is not well studied in Indian population. The present study was aimed to assess the durability and change in responses of humoral immunity with age, prior natural infection, vaccine type and duration with a minimum gap of six months post-two doses with either ChAdOx1 nCov-19 or BBV152 prior- and post-emergence of the omicron variant. Methods: A total of 1300 participants were included in this observational study between November 2021 and May 2022. Participants had completed at least six months after vaccination (2 doses) with either ChAdOx1 nCoV-19 or an inactivated whole virus vaccine BBV152. They were grouped according to their age (≤ or ≥60 yr) and prior exposure of SARS-CoV-2 infection. Five hundred and sixteen of these participants were followed up after emergence of the Omicron variant. The main outcome was durability and augmentation of the humoral immune response as determined by anti-receptor-binding domain (RBD) immunoglobulin G (IgG) concentrations, anti-nucleocapsid antibodies and anti-omicron RBD antibodies. Live virus neutralization assay was conducted for neutralizing antibodies against four variants - ancestral, delta and omicron and omicron sublineage BA.5. Results: Before the omicron surge, serum anti-RBD IgG antibodies were detected in 87 per cent participants after a median gap of eight months from the second vaccine dose, with a median titre of 114 [interquartile range (IQR) 32, 302] BAU/ml. The levels increased to 594 (252, 1230) BAU/ml post-omicron surge (P<0.001) with 97 per cent participants having detectable antibodies, although only 40 had symptomatic infection during the omicron surge irrespective of vaccine type and previous history of infection. Those with prior natural infection and vaccination had higher anti-RBD IgG titre at baseline, which increased further [352 (IQR 131, 869) to 816 (IQR 383, 2001) BAU/ml] (P<0.001). The antibody levels remained elevated after a mean time gap of 10 months, although there was a decline of 41 per cent. The geometric mean titre was 452.54, 172.80, 83.1 and 76.99 against the ancestral, delta, omicron and omicron BA.5 variants in the live virus neutralization assay. Interpretation & conclusions: Anti-RBD IgG antibodies were detected in 85 per cent of participants after a median gap of eight months following the second vaccine dose. Omicron infection probably resulted in a substantial proportion of asymptomatic infection in the first four months in our study population and boosted the vaccine-induced humoral immune response, which declined but still remained durable over 10 months.


Assuntos
COVID-19 , Humanos , Lactente , COVID-19/prevenção & controle , Imunidade Humoral , SARS-CoV-2 , ChAdOx1 nCoV-19 , Vacinação , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
9.
Lancet Reg Health Southeast Asia ; 13: 100203, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37159588

RESUMO

Background: It is critical to identify high-risk groups among children with COVID-19 from low-income and middle-income countries (LMICs) to facilitate the optimum use of health system resources. The study aims to describe the severity and mortality of different clinical phenotypes of COVID-19 in a large cohort of children admitted to tertiary care hospitals in India. Methods: Children aged 0-19 years with evidence of SARS-CoV-2 infection (real time polymerase chain reaction or rapid antigen test positive) or exposure (anti-SARS-CoV-2 antibody, or history of contact with SARS-CoV-2) were enrolled in the study, between January 2021 and March 2022 across five tertiary hospitals in India. All study participants enrolled prospectively and retrospectively were followed up for three months after discharge. COVID-19 was classified into severe (Multisystem Inflammatory Syndrome in Children (MIS-C), severe acute COVID-19, 'unclassified') or non-severe disease. The mortality rates were estimated in different phenotypes. Findings: Among 2468 eligible children enrolled, 2148 were hospitalised. Signs of illness were present in 1688 (79%) children with 1090 (65%) having severe disease. High mortality was reported in MIS-C (18.6%), severe acute COVID-19 (13.3%) and the unclassified severe COVID-19 disease (12.3%). Mortality remained high (17.5%) when modified MIS-C criteria was used. Non-severe COVID-19 disease had 14.1% mortality when associated with comorbidity. Interpretation: Our findings have important public health implications for low resource settings. The high mortality underscores the need for better preparedness for timely diagnosis and management of COVID-19. Children with associated comorbidity or coinfections are a vulnerable group and need special attention. MIS-C requires context specific diagnostic criteria for low resource settings. It is important to evaluate the clinical, epidemiological and health system-related risk factors associated with severe COVID-19 and mortality in children from LMICs. Funding: Department of Biotechnology, Govt of India and Department of Maternal, Child and Adolescent Health and Aging, WHO, Geneva, Switzerland.

10.
Microbiol Spectr ; : e0433222, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946746

RESUMO

Understanding the quality of immune repertoire triggered during natural infection can provide vital clues that form the basis for development of a humoral immune response in some individuals capable of broadly neutralizing pan-SARS-CoV-2 variants. In the present study, we report variations in neutralization potential against Omicron variants of two novel neutralizing monoclonal antibodies (MAbs), THSC20.HVTR11 and THSC20.HVTR55, isolated from an unvaccinated convalescent individual that represent distinct B cell lineage origins and epitope specificity compared to five MAbs we previously reported that were isolated from the same individual. In addition, we observed neutralization of Omicron variants by plasma antibodies obtained from this particular individual postvaccination with increased magnitude. Interestingly, this observation was found to be comparable with six additional individuals who initially were also infected with ancestral SARS-CoV-2 and then received vaccines, indicating that hybrid immunity can provide robust humoral immunity likely by antibody affinity maturation. Development of a distinct antigen-specific B cell repertoire capable of producing polyclonal antibodies with distinct affinity and specificities offers the highest probability of protecting against evolving SARS-CoV-2 variants. IMPORTANCE Development of robust neutralizing antibodies in SARS-CoV-2 convalescent individuals is known; however, it varies at the population level. We isolated monoclonal antibodies from an individual infected with ancestral SARS-CoV-2 in early 2020 that not only varied in their B cell lineage origin but also varied in their capability and potency to neutralize all the known variants of concern (VOCs) and currently circulating Omicron variants. This indicated establishment of unique lineages that contributed in forming a B cell repertoire in this particular individual immediately following infection, giving rise to diverse antibody responses that could complement each other in providing a broadly neutralizing polyclonal antibody response. Individuals who were able to produce polyclonal antibody responses with higher magnitude have a higher chance of being protected from evolving SARS-CoV-2 variants.

11.
Ultrasound Med Biol ; 49(1): 106-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241588

RESUMO

Ultrasound-based assistive tools are aimed at reducing the high skill needed to interpret a scan by providing automatic image guidance. This may encourage uptake of ultrasound (US) clinical assessments in rural settings in low- and middle-income countries (LMICs), where well-trained sonographers can be scarce. This paper describes a new method that automatically generates an assistive video overlay to provide image guidance to a user to assess placenta location. The user captures US video by following a sweep protocol that scans a U-shape on the lower maternal abdomen. The sweep trajectory is simple and easy to learn. We initially explore a 2-D embedding of placenta shapes, mapping manually segmented placentas in US video frames to a 2-D space. We map 2013 frames from 11 videos. This provides insight into the spectrum of placenta shapes that appear when using the sweep protocol. We propose classification of the placenta shapes from three observed clusters: complex, tip and rectangular. We use this insight to design an effective automatic segmentation algorithm, combining a U-Net with a CRF-RNN module to enhance segmentation performance with respect to placenta shape. The U-Net + CRF-RNN algorithm automatically segments the placenta and maternal bladder. We assess segmentation performance using both area and shape metrics. We report results comparable to the state-of-the-art for automatic placenta segmentation on the Dice metric, achieving 0.83 ± 0.15 evaluated on 2127 frames from 10 videos. We also qualitatively evaluate 78,308 frames from 135 videos, assessing if the anatomical outline is correctly segmented. We found that addition of the CRF-RNN improves over a baseline U-Net when faced with a complex placenta shape, which we observe in our 2-D embedding, up to 14% with respect to the percentage shape error. From the segmentations, an assistive video overlay is automatically constructed that (i) highlights the placenta and bladder, (ii) determines the lower placenta edge and highlights this location as a point and (iii) labels a 2-cm clearance on the lower placenta edge. The 2-cm clearance is chosen to satisfy current clinical guidelines. We propose to assess the placenta location by comparing the 2-cm region and the bottom of the bladder, which represents a coarse localization of the cervix. Anatomically, the bladder must sit above the cervix region. We present proof-of-concept results for the video overlay.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Gravidez , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia , Bexiga Urinária/diagnóstico por imagem , Placenta/diagnóstico por imagem
12.
J Glob Health ; 12: 04075, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36579417

RESUMO

Background: The existing World Health Organization (WHO) pneumonia case management guidelines rely on clinical symptoms and signs for identifying, classifying, and treating pneumonia in children up to 5 years old. We aimed to collate an individual patient-level data set from large, high-quality pre-existing studies on pneumonia in children to identify a set of signs and symptoms with greater validity in the diagnosis, prognosis, and possible treatment of childhood pneumonia for the improvement of current pneumonia case management guidelines. Methods: Using data from a published systematic review and expert knowledge, we identified studies meeting our eligibility criteria and invited investigators to share individual-level patient data. We collected data on demographic information, general medical history, and current illness episode, including history, clinical presentation, chest radiograph findings when available, treatment, and outcome. Data were gathered separately from hospital-based and community-based cases. We performed a narrative synthesis to describe the final data set. Results: Forty-one separate data sets were included in the Pneumonia Research Partnership to Assess WHO Recommendations (PREPARE) database, 26 of which were hospital-based and 15 were community-based. The PREPARE database includes 285 839 children with pneumonia (244 323 in the hospital and 41 516 in the community), with detailed descriptions of clinical presentation, clinical progression, and outcome. Of 9185 pneumonia-related deaths, 6836 (74%) occurred in children <1 year of age and 1317 (14%) in children aged 1-2 years. Of the 285 839 episodes, 280 998 occurred in children 0-59 months old, of which 129 584 (46%) were 2-11 months of age and 152 730 (54%) were males. Conclusions: This data set could identify an improved specific, sensitive set of criteria for diagnosing clinical pneumonia and help identify sick children in need of referral to a higher level of care or a change of therapy. Field studies could be designed based on insights from PREPARE analyses to validate a potential revised pneumonia algorithm. The PREPARE methodology can also act as a model for disease database assembly.


Assuntos
Pneumonia , Masculino , Criança , Humanos , Lactente , Recém-Nascido , Pré-Escolar , Feminino , Pneumonia/tratamento farmacológico , Administração de Caso , Organização Mundial da Saúde , Algoritmos , Pesquisa
13.
JMIR Res Protoc ; 11(9): e37374, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048518

RESUMO

BACKGROUND: The World Health Organization recommends a package of pregnancy care that includes obstetric ultrasound scans. There are significant barriers to universal access to antenatal ultrasound, particularly because of the cost and need for maintenance of ultrasound equipment and a lack of trained personnel. As low-cost, handheld ultrasound devices have become widely available, the current roadblock is the global shortage of health care providers trained in obstetric scanning. OBJECTIVE: The aim of this study is to improve pregnancy and risk assessment for women in underserved regions. Therefore, we are undertaking the Computer-Assisted Low-Cost Point-of-Care UltraSound (CALOPUS) project, bringing together experts in machine learning and clinical obstetric ultrasound. METHODS: In this prospective study conducted in two clinical centers (United Kingdom and India), participating pregnant women were scanned and full-length ultrasounds were performed. Each woman underwent 2 consecutive ultrasound scans. The first was a series of simple, standardized ultrasound sweeps (the CALOPUS protocol), immediately followed by a routine, full clinical ultrasound examination that served as the comparator. We describe the development of a simple-to-use clinical protocol designed for nonexpert users to assess fetal viability, detect the presence of multiple pregnancies, evaluate placental location, assess amniotic fluid volume, determine fetal presentation, and perform basic fetal biometry. The CALOPUS protocol was designed using the smallest number of steps to minimize redundant information, while maximizing diagnostic information. Here, we describe how ultrasound videos and annotations are captured for machine learning. RESULTS: Over 5571 scans have been acquired, from which 1,541,751 label annotations have been performed. An adapted protocol, including a low pelvic brim sweep and a well-filled maternal bladder, improved visualization of the cervix from 28% to 91% and classification of placental location from 82% to 94%. Excellent levels of intra- and interannotator agreement are achievable following training and standardization. CONCLUSIONS: The CALOPUS study is a unique study that uses obstetric ultrasound videos and annotations from pregnancies dated from 11 weeks and followed up until birth using novel ultrasound and annotation protocols. The data from this study are being used to develop and test several different machine learning algorithms to address key clinical diagnostic questions pertaining to obstetric risk management. We also highlight some of the challenges and potential solutions to interdisciplinary multinational imaging collaboration. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/37374.

14.
Nat Microbiol ; 7(7): 974-985, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35681012

RESUMO

BBV152 is a whole-virion inactivated vaccine based on the Asp614Gly variant. BBV152 is the first alum-imidazoquinolin-adjuvanted vaccine authorized for use in large populations. Here we characterized the magnitude, quality and persistence of cellular and humoral memory responses up to 6 months post vaccination. We report that the magnitude of vaccine-induced spike and nucleoprotein antibodies was comparable with that produced after infection. Receptor binding domain-specific antibodies declined against variants in the order of Alpha (B.1.1.7; 3-fold), Delta (B.1.617.2; 7-fold) and Beta (B.1.351; 10-fold). However, pseudovirus neutralizing antibodies declined up to 2-fold against the Delta followed by the Beta variant (1.7-fold). Vaccine-induced memory B cells were also affected by the Delta and Beta variants. The SARS-CoV-2-specific multicytokine-expressing CD4+ T cells were found in ~85% of vaccinated individuals. Only a ~1.3-fold reduction in efficacy was observed in CD4+ T cells against the Beta variant. We found that antigen-specific CD4+ T cells were present in the central memory compartment and persisted for at least up to 6 months post vaccination. Vaccine-induced CD8+ T cells were detected in ~50% of individuals. Importantly, the vaccine was capable of inducing follicular T helper cells that exhibited B-cell help potential. These findings show that inactivated vaccine BBV152 induces robust immune memory to SARS-CoV-2 and variants of concern that persists for at least 6 months after vaccination.


Assuntos
COVID-19 , Vacinas Virais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Memória Imunológica , SARS-CoV-2 , Vacinas de Produtos Inativados , Vírion
15.
Front Pharmacol ; 13: 895254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517798

RESUMO

Stringent balance of the immune system is a key regulatory factor in defining successful implantation, fetal development, and timely parturition. Interference in these primary regulatory mechanisms, either at adolescence or prenatal state led to adverse pregnancy outcomes. Fertility restoration with the help of injectable gonadotrophins/progesterone, ovulation-inducing drugs, immunomodulatory drugs (corticosteroids), and reproductive surgeries provides inadequate responses, which manifest its own side effects. The development of a potential diagnostic biomarker and an effectual treatment for adverse pregnancy outcomes is a prerequisite to maternal and child health. Parent cell originated bi-layered-intraluminal nano-vesicles (30-150 nm) also known as exosomes are detected in all types of bodily fluids like blood, saliva, breast milk, urine, etc. Exosomes being the most biological residual structures with the least cytotoxicity are loaded with cargo in the form of RNAs (miRNAs), proteins (cytokines), hormones (estrogen, progesterone, etc.), cDNAs, and metabolites making them chief molecules of cell-cell communication. Their keen involvement in the regulation of biological processes has portrayed them as the power shots of cues to understand the disease's pathophysiology and progression. Recent studies have demonstrated the role of immunexosomes (immunomodulating exosomes) in maintaining unwavering immune homeostasis between the mother and developing fetus for a healthy pregnancy. Moreover, the concentration and size of the exosomes are extensively studied in adverse pregnancies like preeclampsia, gestational diabetes mellitus (GDM), and preterm premature rupture of membrane (pPROMs) as an early diagnostic marker, thus giving in-depth information about their pathophysiology. Exosomes have also been engineered physically as well as genetically to enhance their encapsulation efficiency and specificity in therapy for cancer and adverse pregnancies. Successful bench to bedside discoveries and interventions in cancer has motivated developmental biologists to investigate the role of immunexosomes and their active components. Our review summarizes the pre-clinical studies for the use of these power-shots as therapeutic agents. We envisage that these studies will pave the path for the use of immunexosomes in clinical settings for reproductive problems that arise due to immune perturbance in homeostasis either at adolescence or prenatal state.

16.
PLoS Pathog ; 18(4): e1010465, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482816

RESUMO

Although efficacious vaccines have significantly reduced the morbidity and mortality of COVID-19, there remains an unmet medical need for treatment options, which monoclonal antibodies (mAbs) can potentially fill. This unmet need is exacerbated by the emergence and spread of SARS-CoV-2 variants of concern (VOCs) that have shown some resistance to vaccine responses. Here we report the isolation of five neutralizing mAbs from an Indian convalescent donor, out of which two (THSC20.HVTR04 and THSC20.HVTR26) showed potent neutralization of SARS-CoV-2 VOCs at picomolar concentrations, including the Delta variant (B.1.617.2). One of these (THSC20.HVTR26) also retained activity against the Omicron variant. These two mAbs target non-overlapping epitopes on the receptor-binding domain (RBD) of the spike protein and prevent virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Furthermore, the mAb cocktail demonstrated protection against the Delta variant at low antibody doses when passively administered in the K18 hACE2 transgenic mice model, highlighting their potential as a cocktail for prophylactic and therapeutic applications. Developing the capacity to rapidly discover and develop mAbs effective against highly transmissible pathogens like coronaviruses at a local level, especially in a low- and middle-income country (LMIC) such as India, will enable prompt responses to future pandemics as an important component of global pandemic preparedness.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Camundongos , Glicoproteína da Espícula de Coronavírus
17.
BMJ Glob Health ; 7(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35428680

RESUMO

INTRODUCTION: Existing risk assessment tools to identify children at risk of hospitalised pneumonia-related mortality have shown suboptimal discriminatory value during external validation. Our objective was to derive and validate a novel risk assessment tool to identify children aged 2-59 months at risk of hospitalised pneumonia-related mortality across various settings. METHODS: We used primary, baseline, patient-level data from 11 studies, including children evaluated for pneumonia in 20 low-income and middle-income countries. Patients with complete data were included in a logistic regression model to assess the association of candidate variables with the outcome hospitalised pneumonia-related mortality. Adjusted log coefficients were calculated for each candidate variable and assigned weighted points to derive the Pneumonia Research Partnership to Assess WHO Recommendations (PREPARE) risk assessment tool. We used bootstrapped selection with 200 repetitions to internally validate the PREPARE risk assessment tool. RESULTS: A total of 27 388 children were included in the analysis (mean age 14.0 months, pneumonia-related case fatality ratio 3.1%). The PREPARE risk assessment tool included patient age, sex, weight-for-age z-score, body temperature, respiratory rate, unconsciousness or decreased level of consciousness, convulsions, cyanosis and hypoxaemia at baseline. The PREPARE risk assessment tool had good discriminatory value when internally validated (area under the curve 0.83, 95% CI 0.81 to 0.84). CONCLUSIONS: The PREPARE risk assessment tool had good discriminatory ability for identifying children at risk of hospitalised pneumonia-related mortality in a large, geographically diverse dataset. After external validation, this tool may be implemented in various settings to identify children at risk of hospitalised pneumonia-related mortality.


Assuntos
Pneumonia , Criança , Humanos , Renda , Lactente , Pneumonia/diagnóstico , Medição de Risco
19.
Am J Reprod Immunol ; 87(5): e13531, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312132

RESUMO

PROBLEM: The objective of this study was to examine levels of cytokines across normal term pregnancy in an Indian population. Additionally we have also explored for possible associations between inflammatory markers and fetal growth parameters. METHOD OF STUDY: A multiplex panel of 24 analytes was used to examine levels of inflammatory markers in maternal serum at three time points during pregnancy and in cord blood from women with no reported comorbidities who delivered a singleton live baby at term (N = 23), enrolled in the GARBH-Ini pregnancy cohort. Linear mixed models were applied to construct longitudinal cytokine trajectories with gestational age. Pearson correlation was used to calculate intra-visit correlation between cytokines. Principal component analysis (PCA) was performed to examine cytokine combinations prevalent across pregnancy, and their association with fetal growth parameters was determined by multivariable regression. RESULTS: Significant increase in sFLT-1, Flt3L, PLGF, IL-4, and IL-18 and a decrease in VCAM-1 concentrations was seen across pregnancy. The cytokine concentrations in cord blood differed substantially as compared to maternal levels across gestation. Some cytokines were closely correlated with each other in distinct patterns across pregnancy. Gestational age specific combination of cytokines were seen to be associated with different fetal growth parameters. CONCLUSIONS: This study for the first time provides reference concentrations for the longitudinal expression of immune markers across pregnancy in an Indian population providing a much needed baseline to compare with pregnancies leading to adverse outcomes. Growth factors showed maximum longitudinal variation with gestational age and strong correlations were identified between various cytokines at all time points across pregnancy.


Assuntos
Citocinas , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Biomarcadores , Feminino , Idade Gestacional , Humanos , Fator de Crescimento Placentário , Gravidez
20.
EBioMedicine ; 78: 103938, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35305396

RESUMO

BACKGROUND: Rapid spread of the omicron SARS-CoV-2 variant despite extensive vaccination suggests immune escape. The neutralising ability of different vaccines alone or with natural SARS-CoV-2 infection against omicron is not well-known. METHODS: In this cross-sectional study, we tested the ability of vaccine and natural infection induced antibodies to neutralise omicron variant in a live virus neutralisation assay in four groups of individuals: (i) ChAdOx1 nCoV-19 vaccination, (ii) ChAdOx1 nCoV-19 vaccination plus prior SARS-CoV-2 infection, (iii) vaccination with inactivated virus vaccine (BBV152), and (iv) BBV152 vaccination plus prior SARS-CoV-2 infection. Primary outcome was fold-change in virus neutralisation titre against omicron compared with ancestral virus. FINDINGS: We included 80 subjects. The geometric mean titre (GMT) of the 50% focus reduction neutralisation test (FRNT50) was 380·4 (95% CI: 221·1, 654·7) against the ancestral virus with BBV152 vaccination and 379·3 (95% CI: 185·6, 775·2) with ChAdOx1 nCov-19 vaccination alone. GMT for vaccination plus infection groups were 806·1 (95% CI: 478·5, 1357·8) and 1526·2 (95% CI: 853·2, 2730·0), respectively. Against omicron variant, only 5 out of 20 in both BBV152 and ChAdOx1 nCoV-19 vaccine only groups, 6 out of 20 in BBV152 plus prior SARS-CoV-2 infection group, and 9 out of 20 in ChAdOx1 nCoV-19 plus prior SARS-CoV-2 infection group exhibited neutralisation titres above the lower limit of quantification (1:20) suggesting better neutralisation with prior infection. A reduction of 26·6 and 25·7 fold in FRNT50 titres against Omicron compared to ancestral SARS-CoV-2 strain was observed for individuals without prior SARS-CoV-2 infection vaccinated with BBV152 and ChAdOx1 nCoV-19, respectively. The corresponding reduction was 57·1 and 58·1 fold, respectively, for vaccinated individuals with prior infection. The 50% neutralisation titre against omicron demonstrated moderate correlation with serum anti-RBD IgG levels [Spearman r: 0·58 (0·41, 0·71)]. INTERPRETATION: Significant reduction in the neutralising ability of both vaccine-induced and vaccine plus infection-induced antibodies was observed for omicron variant which might explain immune escape. FUNDING: Department of Biotechnology, India; Bill & Melinda Gates Foundation, USA.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Estudos Transversais , Humanos , SARS-CoV-2 , Vacinas de Produtos Inativados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...